Nile Higher Institute
For Engineering and Technology
Civil Engineering Department
(Sanitary Project)
(مشروع صحية)

Water Treatment Plant

2022-2023

Prepared by:

Mahmoud Ebrahem khames (160240)
Mohamed khalid Ahmed slam
(150151)
Ahmed Mahmoud Hassan Elashry (170034)
Elbendary Mostafa Yahia
(170053)
Ahmed Ibrahem Abdel Aziz Nasr (150234)
Mohamed Hossam Nafie
(170176)
Khaled Abdin Elkady
(150261)
Mostafa Abd Elfatah Elbady
(150192)

Supervisor: Associate prof. Kamal Radwan

 "Professor at Civil Department, Nile Higher Institute for Engineering and Technology, Mansoura"Eng. Karim Taha
Teaching assistant at Civil Department, Nile Higher Institute for Engineering and Technology

(Sanitary Engineering Project)
 Dr. Kamal Radwan

Group No (3)

Table OF Contents

Abstract 5
Introduction 6
Chapter (1)
Forecasting population 7-9
Design Flow 10
Water Treatment plant units 11-27
Design discharge Qd 11
Design of conduit pipes 12
Losses. 12
Screen 13
Design of sump 14
Design of low lift pump 14
Design of suction pipe 15
Design of header 16
Design of force main 16-17
Design of Horse Power 17
Coagulation 18-19
Rapid mixing tank 19
Power Tank 20
Clarri-flocculation Tank. 20-22
Volume of Sludge 22
Design of inlet pipes 23
Design of outlet pipes 23
Filtration Tank 24
Amount of wash water 25
Head losses 25
Wash water Gutter 25
Ground Tank 26-27
Table of final results 28
Sludge Tank. 29
Elevated Tank 30-31
Chapter (2)
Waste Water Treatment Plant. 32-34
Design Flow. 32
Pumps Station 35
Conclusion 36
References 37
Standard 38

Abstract

We worked in this project (sanitary engineering project) on how to design a water network for a city, where we knew how to calculate the expected population, whether in the first or second stage, designing tanks for Rapid mixing tank, sedimentation zone, clarri_flocculation, and the ground tank. We worked on knowing the type of pipes used in city planning and designing a water station. For distribution with engineering standards according to the Egyptian code

We have worked on designing a sewage treatment plant and the used pipes, which in the station or planning the city sewage pipes.

Introduction

It is a very important concept for the livelihood of towns and its communities. The entire discipline of sanitary engineering typically deals with the application of proven engineering methods to ensure an efficient sanitation system for human communities and also improve the accessibility of drinking water for them.

In the older engineering sciences, it was seen as a subset of civil engineering. But now with the growing emphasis on the environment, it comes under the environmental engineering branch.

The different skills which one can gain by learning the content in this field are to ensure clean and potable drinking water for humans, proper waste disposal within the economic boundaries of the community and also the treatment of wastewater. One unique feature of this field of engineering is that it is more of an open system, unlike the mechanical or electrical sciences. That is, the content in this field contains a lot from the other disciplines and some examples include, hydraulics, microbiology, project design, information technology and even environment technology.

Water scarcity is one of the main challenges faced by the sanitation engineers today. There is a constant need for new forms of technology that will enable more efficient use of the water available. Some of the technologies such as sonar mapping is used to determine the amount of the water contained in the well. Some cities which are near the sea also use desalination plants, which clean the saltwater from the sea and make it drinkable. The downside to this technology now is that it is highly expensive, and cities which do not have good revenue are still unable to adopt this process.

The second challenge in sanitation engineering is climate change. For instance, in the treatment of wastewater, a lot of greenhouse gases such as Methane and Carbon Dioxide are present. These gases are produced when the anaerobic bacteria decompose the organic matter. But this is not the direct contributor to climate change. This is because the sewer system is mostly blocked off from the overground. So, when there is a sewer blockage, methane and other greenhouse gases will be trapped inside, usually reprocessed and treated. The emissions from the machines that undertake this process produce far more harmful gases which
contribute to climate change. So, a lot of facilities around the world is being renovated to make them eco - friendly as much as possible.

(Water Treatment Plant)

Population and Water Consumption

The previous census records for the required city are as follows :

P1996 = 95610 capita
 P2006 = 116048 capita

P2016 = 142721 capita

Forecasting Population:

A. Arithmetic Method:

Year	Population(p)	$\Delta \mathbf{P}$	$\Delta \mathbf{t}$	Ka $=\Delta \mathbf{P} / \Delta \mathbf{t}$
1996	95610	--	--	---
		20438	10	2043.8
2006	116048			
		26673	10	2667.3
2016	142721			
				Sum of Ka=5440

Ka (Average)= sum of ka / N.O.Ka = 4711/2= 2356 capita/year.

$$
\mathbf{P}_{\mathrm{n}}=\mathrm{P}_{\mathrm{o}}+\mathrm{ka} * \Delta \mathrm{t}
$$

- $\quad P_{2040}=P_{2016}+k a * \Delta t$
$=142721+2356(2040-2016)=199265$ capita
- $\quad P_{2060}=P_{2016}+k a * \Delta t$
$=142721+2356(2060-2016)=246385$ capita
B. Geometric Method:

Year	Population (P)	$\operatorname{Ln}(\mathrm{P})$	$\Delta \operatorname{Ln}(\mathrm{P})$	$\Delta \mathrm{t}$	Kg
1996	95610	11.468	-	--	--
			0.193	10	0.0193
2006	116048	11.661			
			0.207	10	0.0207
2016	142721	11.868			
					Sum of kg=0.04

Ka (Average) $=0.04 / 2=0.02$ capita/year.
$\operatorname{Ln}\left(P_{n}\right)=\ln \left(P_{o}\right)+K g * \Delta t$
$\operatorname{Ln}\left(\mathrm{P}_{2040}\right)=\ln \mathrm{P}_{2016}+\mathrm{kg} * \Delta \mathrm{t}$
$=11.868+0.02(2040-2016)=12.348 * P_{2040}=230499$ capita.
$\operatorname{Ln}\left(\mathrm{P}_{2060}\right)=\ln \mathrm{P}_{2060}+\mathrm{kg} * \Delta \mathrm{t}$
$=11.868+0.02(2060-2016)=12.748 * P_{2060}=343864$ capita

C. Annual Growth Rate Method:

Year	Population (P)	$\mathbf{P}_{\mathrm{n}} / \mathbf{P}_{\mathbf{o}}$	$\Delta \mathbf{t}$	$\left(\mathbf{P}_{\mathrm{n}} / \mathbf{P}_{\mathbf{o}}\right)^{\frac{1}{\Delta t}}$	$\mathbf{m} / \mathbf{1 0 0}$
1996	$\mathbf{9 5 6 1 0}$	--	--	---	
		$\mathbf{1 . 2 1 4}$	$\mathbf{1 0}$	$\mathbf{1 . 0 1 9 6}$	0.0196
2006	$\mathbf{1 1 6 0 4 8}$				
		$\mathbf{1 . 2 3}$	$\mathbf{1 0}$	1.021	0.021
2016	$\mathbf{1 4 2 7 2 1}$				Sum of $\mathbf{m}=\mathbf{0 . 0 4 0 6}$

M (average) = sum of $m / N . o . m=0.0406 / 2=0.0203$ capita/year

$$
\begin{aligned}
\mathrm{P}_{\mathrm{n}}= & \mathrm{P}_{\mathrm{o}} *(1+\operatorname{mav})^{\Delta t} \\
& -\mathrm{P}_{2040}=\mathrm{P}_{2016} *(1+\operatorname{mav})^{\Delta t} \\
& =142721 *(\mathbf{1}+\mathbf{0 . 0 2 0 3})^{2040-2016}=\mathbf{2 3 1 1 8 4} \text { capita } \\
& -\mathrm{P}_{2060=\mathrm{P}_{2} 2016 *(1+\text { mav })^{\Delta t}}=\mathbf{1 5 4 8 0 0 * (1 + \mathbf { 0 . 0 2 2 5 }) ^ { \mathbf { 2 0 6 0 - 2 0 1 6 } } = \mathbf { 3 4 5 5 5 4 } \text { capita }}
\end{aligned}
$$

- Final Results:

	Method 1	Method 2	Method 3
P $_{2040}$	199265	230499	231184

P2060	246385	343864	345554

P2040 Av = 220316 capita
$P_{2060} A v=311935$ capita

Stage (1): (2040)

$q_{2040}=\mathbf{2 5 0} \mathbf{L} / \mathrm{c} / \mathrm{d}$
$q=0.25 \mathrm{~m} / \mathrm{c} / \mathrm{d}$
P (2040) av = 220316 capita
$\mathrm{Q}_{2040 \mathrm{av}}=\mathrm{P}_{2040 \mathrm{av} *}$ q2040
$=220316$ * $0.25=55079 \mathrm{~m}^{3} /$ day
$Q_{\text {max monthly }}=1.4$ Qav

$$
=1.4 * 55079=77111 \mathrm{~m}^{3} / \text { day }
$$

$Q_{\text {max daily }}=1.8$ Qav

$$
=1.8 * 55079=99143 m^{3} / \text { day }
$$

$Q_{\text {max hourly }}=2.5$ * Qav
$=2.5 * 55079=137698 \mathrm{~m}^{3} /$ day
$Q_{\text {design }}=1.1$ * 1.4 * Qav
$=1.1 * 1.4 * 55079=84822 \mathrm{~m}^{3} /$ day

Stage (2): (2060)

$q_{2060}=\mathbf{2 7 0} \mathbf{L} / \mathrm{c} / \mathrm{d}$
$q=0.27 \mathrm{~m} / \mathrm{c} / \mathrm{d}$
P(2060) = 311935 capita

$$
\begin{aligned}
& \mathrm{Q}_{2060} \mathrm{av}=\mathrm{P}_{2060}{ }^{*} \mathbf{q}_{2060} \\
& =311935{ }^{*} 0.27=84223 \mathrm{~m}^{3} / \text { day } \\
& Q_{\text {max monthly }}=1.4 \text { * } \text { qav } \\
& =1.4 \text { * 84223 }=117913 \mathrm{~m}^{3} / \text { day } \\
& Q_{\text {max daily }}=1.8 \text { * } \text { qav } \\
& =1.8 * 84223=151602 \mathrm{~m}^{3} / \text { day } \\
& Q_{\text {max hourly }}=2.5^{*} \text { qav } \\
& =2.5 * 84223=210558 \mathrm{~m}^{3} / \text { day } \\
& Q_{\text {design }}=1.1 \text { * } 1.4^{*} \text { qav } \\
& =1.1 * 1.4 * 84223=129704 \mathrm{~m}^{3} / \text { day }
\end{aligned}
$$

Flow	Stage (1)		Stage (2)	
........	$\frac{m^{3}}{d a y}$	$\mathrm{m}^{3} /$ Sec	$\frac{m^{3}}{d a y}$	m^{3} / Sec
Qav	55074	0.64	84223	0.97
$\mathbf{Q m a x}_{\text {monthly }}$	77111	0.90	117913	1.36
$\mathbf{Q}_{\text {max daily }}$	99143	1.15	151602	1.75
Qmax hourly	137698	1.6	210558	2.44
Qdesign	84822	0.98	129704	1.5

(Water Treatment Plant Units)

Design Discharge Qd:

- Stage 1 :
$Q_{d}=\frac{84822}{24 * 60 * 60}=0.98 \mathrm{~m}^{3} / \mathrm{sec}$

- Stage 2 :

$$
Q_{d}=\frac{129704}{24 * 60 * 60}=1.5 \mathrm{~m}^{3} / \mathrm{sec}
$$

Design Of Conduit Pipes:

$Q_{d}=1.5 \mathrm{~m}^{3} / \mathrm{sec}$
Assume $V=1.0 \mathrm{~m}^{3} / \mathrm{sec}$
Assume $\mathrm{N}=4$
$\mathrm{A}=\mathrm{N} \frac{\pi \varphi^{2}}{4}$
$1.5=4 * \frac{\pi \varphi^{2}}{4} \varphi=691 \mathrm{~mm}=700 \mathrm{~mm}$
$\mathrm{A}_{\mathrm{T}}=4 * \frac{\pi *(0.7)^{2}}{4}=1.54 \mathrm{~m}^{2}$
$V_{\text {act stage (2) }}=\frac{Q d}{A t}=\frac{1.5}{1.54}=0.97 \mathrm{~m} / \mathrm{sec} \rightarrow(0.8 \rightarrow 1.5)$ Ok.

Check Of $\mathrm{Vact} \rightarrow \mathbf{N}=\mathbf{3}$
$\mathrm{A}=\frac{N \pi \varphi^{2}}{4}=3 * \frac{\pi *(0.7)^{2}}{4}=1.15 \mathrm{~m}^{2}$
$V_{\text {act stage }}^{(1)}=\frac{0.98}{1.15}=0.85 \mathrm{~m} / \mathrm{sec} \rightarrow(0.8 \rightarrow 1.5) \mathrm{Ok}$.

囚 Stage $1=3 \varnothing 700$
区 Stage 2 = 4 Ø 700

Losses:

$\mathrm{L}=100 \mathrm{~m}$

Stage 1:

$h . L=\frac{F . L . V}{2 g \emptyset}=\frac{0.04 * 100 *(0.85)^{2}}{2 * 9.81 *(0.7)}=0.24 \mathrm{~m}$

* Stage 2:

$$
h . L=\frac{F . L . V}{2 g \varnothing}=\frac{0.04 * 100 *(0.97)^{2}}{2 * 9.81 *(0.7)}=0.29 \mathrm{~m}
$$

Assume = $B=1.5 \emptyset=1.5$ * $70=105 \mathrm{~m}$

$$
\mathrm{a}=1.5 \mathrm{~cm}
$$

$$
\emptyset=60
$$

$$
\mathrm{S}=3.0 \mathrm{~cm}
$$

$B=N^{*} S+(N-1) a \rightarrow 1.05=0.03 N+(N-1) * 0.015 \rightarrow$
$\mathrm{N}=23$
No. Of Opening = 23
No. Of Bars = N-1 = 22

Screen:

h.LScreen $=\frac{1.4\left[\left(v_{2}{ }^{2}-v_{1}{ }^{2}\right)\right]}{2 g}$
$\mathrm{v} 1=\frac{\varphi_{t} / N}{B * d}=\frac{1.5 / 4}{1.05 * 2.5}=0.142$
$\mathrm{d}=\mathrm{w} . \mathrm{L}-\mathrm{b} . \mathrm{L}=6.68-4.5=2.18 \mathrm{~m}$
$\mathrm{d} 1=\mathrm{d}-(0.5-1)=2.18-0.8=1.38 \mathrm{~m}$
$\mathrm{v} 1=\frac{\emptyset}{A_{n e t}}=\frac{1.8 / 3}{N * s * d / \sin \emptyset}=\frac{0.98 / 3}{23 * 0.03 * 2 / \sin (60)}=0.205 \mathrm{~m} / \mathrm{sec}$
$\mathrm{v} 2=\frac{1.5 / 4}{23 * 0.03 * 2 / \sin (60)}=0.235 \mathrm{~m} / \mathrm{sec}$
$h . L=1.4 * \frac{(0.205)^{2}-(0.124)^{2}}{2 * 9.81}=1.902 * 10^{-3} \mathrm{~m} \rightarrow$ stage 1
$h . L=1.4 * \frac{(0.235)^{2}-(0.142)^{2}}{2 * 9.81}=2.502 * 10^{-3} \mathrm{~m} \rightarrow$ stage 2

Design of sump:

- Stage 2:

Assume $\mathrm{T}=5 \mathrm{~min}$
$\mathrm{V}=\mathrm{Q} * \mathrm{~T}=5 * 60 * 1.5=450 \mathrm{~m}^{3}$
$D_{\text {sump }}=[w . L-b . L$ source $+1+1]=$
$=6.68-4.5+1+1=4.2 \mathrm{~m}$
Areasump $=\frac{\forall}{d}=\frac{450}{4.2}=107.14 \mathrm{~m}^{2}$
Assume width $=3 \mathrm{~m}$
$\forall=L^{*} \mathbf{w}^{*} \mathbf{d}$

$$
450=L * 3 * 4.5 \rightarrow L=34 \mathrm{~m}
$$

Sump = [3 * 4.5 * 34]

- Stage 1:
$\forall=Q^{*} T=5 * 60 * 0.98=294 \mathrm{~m}^{3}$
width $=3$
$294=\mathrm{L} * 3 * 4.5 \rightarrow \mathrm{~L}=22$
Sump [3 * 4.5* 22]

Design of low left pump:

- suction pipe \& rising main:

$$
\begin{aligned}
Q_{d}=1.5 \frac{m^{3}}{\text { sec }} \mathrm{N} & =9 \rightarrow 1.5 \mathrm{n} \rightarrow \mathrm{n}=6 \\
\mathrm{~N} & =9 \rightarrow[6 \text { working }+3 \text { stand by }]
\end{aligned}
$$

$Q_{p}=\frac{Q_{d}}{n}=\frac{1.5}{6}=0.250 \frac{\mathrm{~m}^{3}}{\text { sec }} \rightarrow 250 \mathrm{Lit} / \mathrm{sec}$
Assume $\forall=1.5 \mathrm{~m} / \mathrm{sec}$

$$
\begin{aligned}
& \mathrm{A}=\frac{1.5}{1.5}=1 \mathrm{~m}^{2} \rightarrow 1=\frac{N \pi \phi^{2}}{4} \rightarrow \mathrm{~N}=1 \\
& \emptyset=1236 \mathrm{~mm} \rightarrow \mathrm{~V}_{\text {act }}=\frac{1.236}{1.2}=1.03 \mathrm{~m} / \mathrm{sec}
\end{aligned}
$$

$$
H_{\text {static }}=G . L-w . L_{\text {sump }}+6
$$

$$
=24-21+6=9 m
$$

- Stage 1:

$\mathrm{N}=6 \rightarrow$ [4 working + 2 stand by]
\rightarrow Neglect the friction losses in suction pipe

$$
\begin{aligned}
& \mathrm{Q}_{2}=0.98 \frac{\mathrm{~m}^{3}}{\text { sec }} \rightarrow \mathrm{V}=1.5 \mathrm{~m} / \mathrm{sec} \\
& \mathrm{~A}=\frac{0.98}{1.5}=0.65 \mathrm{~m}^{2}
\end{aligned}
$$

Design of Suction Pipe:

A. Stage 2:

$$
\begin{aligned}
& Q_{d}=1.5 \frac{m^{3}}{s e c} \\
& Q_{d}=A * V, \text { assume } V=1 \mathrm{~m} / \mathrm{sec} \\
& A=n * \frac{\pi}{4} \emptyset^{2}, \text { assume } \mathrm{n}=4 \\
& Q_{d}=A * V \\
& 1.5=4 * \frac{\pi}{4} \emptyset^{2} * 1, \emptyset=0.7 \\
& A_{\text {act }}=\mathrm{n} * \frac{\pi}{4} \emptyset^{2}=4 * \frac{\pi}{4}(0.7)^{2}=1.53 \mathrm{~m}^{2} \\
& V_{\text {act }}=\frac{Q_{d}}{A_{\text {act }}}=\frac{1.5}{1.53}=0.98 \mathrm{~m} / \mathrm{sec}
\end{aligned}
$$

B.Stage 1: (Check)
 $Q_{d}=0.98 \frac{m^{3}}{\text { sec }}$

$Q_{d}=A * V$, assume $V=1 \mathrm{~m} / \mathrm{sec}$
$A=n * \frac{\pi}{4} \phi^{2}$, assume $n=3$
$Q_{d}=A * V$
$0.98=4 * \frac{\pi}{4} \emptyset^{2} * 1, \emptyset=0.7$
Aact $=\mathrm{n} * \frac{\pi}{4} \phi^{2}=3 * \frac{\pi}{4}(0.7)^{2}=1.5 \mathrm{~m}^{2}$
$V_{\text {act }}=\frac{Q_{d}}{A_{\text {act }}}=\frac{0.98}{1.5}=0.85 \mathrm{~m} / \mathrm{sec} \quad, \mathrm{Ok}$.

Design of Header:

- Stage 2:
$Q_{d}=A * V$, assume $V=1 \mathrm{~m} / \mathrm{sec}$

$$
A=\frac{\pi}{4} \phi^{2}
$$

$Q_{d}=A * V$
$1.5=\frac{\pi}{4} \emptyset^{2} * 1 \rightarrow \emptyset=1.3$
Act $=\frac{\pi}{4} \emptyset^{2}, \frac{\pi}{4}(1.3)^{2}=1.32 m^{2}$
$V_{\text {act }}=\frac{Q_{d}}{A_{\text {act }}}=\frac{1.5}{1.32}=1.13 \mathrm{~m} / \mathrm{sec}$

- Stage 1: (Check)
$Q_{d}=A * V$, assume $V=1 \mathrm{~m} / \mathrm{sec}$
$\mathrm{A}=\frac{\pi}{4} \phi^{2}$
$Q_{d}=A * V$
$0.98=\frac{\pi}{4} \phi^{2} * 1, \emptyset=1$
Aact $=\frac{\pi}{4} \emptyset^{2}=\frac{\pi}{4}(1)^{2}=0.78 m^{2}$
$V_{\text {act }}=\frac{Q_{d}}{A_{\text {act }}}=\frac{0.98}{0.78}=1.25 \mathrm{~m} / \mathrm{sec}, \quad O \mathrm{k}$.

Design of Force Main:

- Stage 2:

$Q_{d}=A * V$, assume $V=1.5 \mathrm{~m} / \mathrm{sec}$
$A=\frac{\pi}{4} \phi^{2}$
$Q_{d}=A * V$
$1=\frac{\pi}{4} \emptyset^{2}$, $\varnothing=1.1$
Aact $=\frac{\pi}{4} \phi^{2}=\frac{\pi}{4}(1.1)^{2}=0.95 m^{2}$
$V_{\text {act }}=\frac{Q_{d}}{A_{\text {act }}}=\frac{1.5}{0.95}=1.58 \mathrm{~m} / \mathrm{sec}$
区 Losses:

$$
\begin{aligned}
& \text { h.L }=\frac{f L V^{2}}{2 g \emptyset}, \text { assume } \mathrm{L}=50 \mathrm{~m} \\
& \text { h.L }=\frac{0.04 * 50 *(1.58)^{2}}{2 * 9.81 * 1.1}=0.23 \mathrm{~m}
\end{aligned}
$$

- Stage 1: (Check)
$Q_{d}=A * V$, assume $V=1.5 \mathrm{~m} / \mathrm{sec}$
$A=\frac{\pi}{4} \emptyset^{2}$
$Q_{d}=A * V$
Assume, $\varnothing=0.8$
Aact $=\frac{\pi}{4} \varnothing^{2}=\frac{\pi}{4}(0.8)^{2}=0.5 \mathrm{~m}^{2}$
$V_{\text {act }}=\frac{Q_{d}}{A_{\text {act }}}=\frac{0.98}{0.5}=1.96 \mathrm{~m} / \mathrm{sec}$

区 Losses:

$$
\begin{aligned}
& \text { h.L }=\frac{f L V^{2}}{2 g \emptyset}, \text { assume } L=50 \mathrm{~m} \\
& \text { h.L }=\frac{0.04 * 50 *(1.96)^{2}}{2 * 9.81 * 0.8}=0.49 \mathrm{~m}
\end{aligned}
$$

Design of Horse Power:

- Stage 2:

Assume, $\mathrm{Q}_{\mathrm{p}}=1500 \mathrm{~L} / \mathrm{sec}=1.5 \mathrm{~m}^{3} / \mathrm{sec}$

$$
\begin{aligned}
& \mathrm{Q}_{\text {pump }}=\frac{Q_{d}}{n}= \\
& \mathrm{n}=10 \\
& \quad \mathrm{Q}_{\text {pump }}=\frac{1500}{6}=250 \text { Liter } / \mathrm{Sec} \\
& \mathrm{Hp}= \\
& =\frac{\gamma Q_{p} H_{t}}{75 \lambda_{1} \lambda_{2}} \\
& = \\
& =\frac{1 * 250 * 7}{75 * 0.63}=37 \mathrm{HP} \\
& \mathrm{H}_{\mathrm{t}}=\text { hstatic }+\mathrm{hf}+\mathrm{hminor} \\
& = \\
& =(\text { R.M.T }-\mathrm{W} . \mathrm{L})+\mathrm{hf}+\mathrm{hminor} \\
& = \\
& (12-6.68)+0.14+0.2(0.14)=5.5 \\
& \\
& \\
& 9(22) \mathrm{Hp}
\end{aligned}
$$

- Stage 1:

Assume 7 \emptyset 22Hp

$$
\mathrm{Qp}=\frac{Q_{d}}{n}
$$

$$
=\frac{980}{7}=140 \mathrm{Liter} / \mathrm{Sec}
$$

(Coagulation)

- Alum solution tanks:
$S=(20 \rightarrow 40) \mathrm{mg} / \mathrm{L}$
$\mathrm{Q}_{\mathrm{d}} * \mathrm{~s} *\left(365 * 10^{-6}\right)$
$=129704 * 40 *\left(365 * 10^{-6}\right)=1894.2 \mathrm{t} /$ year
$\forall=\frac{Q_{d^{*}}}{c * \gamma * 10^{6}}=\frac{129704 * 40}{1.05 * 0.1 * 10^{6}}=49.41 \mathrm{~m}^{3} / \mathrm{sec}$

Assume No. of tanks $=\mathbf{3}$ tanks
\forall for one $\operatorname{tank}=\frac{\forall}{3}=\frac{49.41}{3}=16.47 \mathrm{~m}^{3} /$ day

$$
\begin{aligned}
A=\frac{\forall}{d}=\frac{16.47}{1.5} & =10.98 \rightarrow A=L^{2} \\
L & =\sqrt{10.98}=3.31 \approx 3.3 \mathrm{~m}
\end{aligned}
$$

3 tanks with dimension [3.3 * 3.3 * 1.5] m

- Outlet Pipe:
- Assume V $=0.8 \mathrm{~m} / \mathrm{sec}$

$$
\begin{aligned}
& \mathrm{Q}=\mathrm{A} * \mathrm{~V}=\frac{49.41}{24 * 60 * 60}=\mathrm{A}^{*} 0.8 \\
& \mathrm{~A}=1.875 * \mathbf{1 0}^{-4} \mathrm{~m}^{2} \\
& \mathrm{~A}=\frac{\pi}{4} \emptyset^{2} \rightarrow 1.875 * 10^{-4}=\frac{\pi}{4} \emptyset^{2}, \quad \emptyset=1.5
\end{aligned}
$$

$$
\text { Aact }=\frac{\pi}{4} 1.5^{2}=1.767 m^{2}
$$

(Rapid Mixing Tank)

$$
\mathrm{T}=\mathbf{6 0} \mathrm{sec} \quad \mathrm{~d}=\mathbf{3} \mathrm{m}
$$

Stage 2: $Q_{d}=1.5 \mathrm{~m}^{3} / \mathrm{sec}$
$\forall=Q_{d} * T=1.5 * 60=90 \mathrm{~m}^{3}$
$A=\frac{\forall}{d}=\frac{90}{3}=30 \mathrm{~m}^{2}$
Assume $n=3.76 \quad n=4$
$A=2 * \frac{\pi}{4} \phi^{2}, \quad \emptyset=4.4 \mathrm{~m}$
$\forall_{a c t}=d * A=2 *\left(2 * \frac{\pi}{4} * 4.4^{2}\right)=91.3 \mathrm{~m}^{3}$
$T_{\text {act }}=\frac{\forall \text { act }}{Q_{d}}=\frac{91.3}{1.5}=61 \mathrm{sec}, \quad 0 \mathrm{k}$
\star Stage 1: $Q_{d}=0.98 \frac{\mathrm{~m}^{3}}{\mathrm{sec}}$

$$
A_{a c t}=\frac{\pi}{4}(4.4)^{2}=15.2 \mathrm{~m}^{2}
$$

$$
\begin{aligned}
& \forall_{\text {act }}=d^{*} A=3 * 15.2=45.6 \mathrm{~m}^{3} \\
& T_{\text {act }}=\frac{\forall \text { act }}{Q_{d}}=\frac{45.6}{0.98}=46 \mathrm{sec}, \quad 0 \mathrm{k}
\end{aligned}
$$

(Power Tank)

- $\mathrm{P}=\boldsymbol{G}^{2}{ }^{*} \boldsymbol{\mu}^{*} \forall \quad$ Assume $\mathbf{G}=\mathbf{7 0 0}$
$=800^{2} *\left(1.002 * 10^{-3}\right) * 45.6$
$=36 \mathrm{KW}$
Power required for stage 1, 2 = 36 KW

(Clari-Flocculation Tank)

Stage 2:

-Sedimentation Zone:
$Q_{d}=1.5 \mathrm{~m}^{3} / \mathrm{sec}$
$\mathrm{t} \rightarrow 3.5 \mathrm{hr}$ ds $\rightarrow \mathbf{4 m}$
$\forall=\mathrm{Q}_{\mathrm{d}} *$ ttotal $=1.5 * 3.5 * 60 * 60=18900 \mathrm{~m}^{3}$
$A=\frac{\forall}{d}=\frac{18900}{4}=4725 \mathrm{~m}^{2}$
$A=n * \frac{\pi}{4} \phi^{2}$,

$$
4725=n * \frac{\pi}{4} * 40^{2}, \quad n=3.76 \approx 4
$$

$\mathrm{A}=4 * \frac{\pi}{4} \emptyset_{2}{ }^{2}, \quad \emptyset_{2}=38.7=39 \mathrm{~m}$

- Flocculation Zone:

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{f}} \rightarrow 0.5 \\
& \mathrm{D}_{\mathrm{f}} \rightarrow 3.5
\end{aligned}
$$

$$
\forall=Q_{d} * t_{f}=1.5 * 0.5 * 60 * 60=2700 \mathrm{~m}^{3}
$$

$$
\mathrm{A}=\frac{\forall}{d_{f}}=\frac{2700}{3.5}=771.4 \mathrm{~m}^{2}
$$

$$
\mathrm{A}=\mathrm{n} * \frac{\pi}{4} \emptyset^{2},
$$

$$
771.4=4 * \frac{\pi}{4} \emptyset_{1}{ }^{2}, \quad \emptyset_{1}=15.6 \mathrm{~m}
$$

Stage 1:

-Sedimentation Zone:
$\mathrm{D}=4 \mathrm{~m}$
$Q_{d}=4174.5 m^{3} / \mathrm{hr}$

$$
\begin{aligned}
\mathrm{A} & =\mathrm{n} * \frac{\pi}{4} \emptyset_{T}^{2} \\
& =3 * \frac{\pi}{4} *(40)^{2}=3769.9 \mathrm{~m}^{2} \\
\forall & =\mathrm{A} * \mathrm{~d} \\
& =3769.9 * 4=15079.64 \mathrm{~m}^{3} \\
\mathrm{~T}_{\mathrm{f}} & =\frac{\forall}{Q_{d}}=\frac{15079.64}{0.98 * 60 * 60}=4.2 \mathrm{hr}
\end{aligned}
$$

-Flocculation Zone:

$\mathrm{D}=3.5 \mathrm{~m}$

$$
Q_{d}=4174.5 m^{3} / \mathrm{hr}
$$

$$
\begin{aligned}
\mathrm{A} & =\mathrm{n} * \frac{\pi}{4} \emptyset_{f}^{2} \\
& =3 * \frac{\pi}{4} *(15.6)^{2}=573.4 \mathrm{~m}^{2} \\
\forall & =\mathrm{A} * \mathrm{~d} \\
= & 573.4 * 4=2293.6 \mathrm{~m}^{3} \\
\mathrm{~T}_{\mathrm{f}} & =\frac{\forall}{Q_{d}}=\frac{2293.6}{0.98 * 60 * 60}=0.65 \mathrm{hr}
\end{aligned}
$$

- S.L.R:
- Stage 2:
$Q_{d=} 129704 m^{3} /$ day
$=\frac{Q / n}{\frac{\pi}{4}\left(\emptyset_{2}{ }^{2}-\emptyset_{1}{ }^{2}\right)}=\frac{129704 / 4}{\frac{\pi}{4}\left(38.8^{2}-15.6^{2}\right)}=32.7$, Ok
- S.L.R:
- Stage 1:

$$
Q_{d}=84822 m^{3} / \text { day }
$$

$$
=\frac{84822 / 3}{\frac{\pi}{4}\left(38.8^{2}-15.6^{2}\right)}=28.52,0 \mathrm{Ok}
$$

*Volume of Sludge:

$$
\forall=\frac{Q / n * S . s * R}{(1-w c) \gamma * 10^{6}}
$$

$$
=\frac{129704 / 4 * 50 * 0.95}{(1-0.97) * 1.05 * 10^{6}} \approx 48.8 \mathrm{~m}^{3}
$$

- Sludge must be exited three times daily.

$$
\forall \text { of sludge zone }=\frac{\forall}{3}=\frac{48.8}{3}=16.2 \mathrm{~m}^{3}
$$

$$
\begin{aligned}
& \text { Desludging duration }=20 \mathrm{~min} \\
& =\mathbf{1 2 0 0} \mathbf{~ s e c} \\
& Q=\frac{\forall}{t}=\frac{16.29}{20 * 60}=0.0135 \mathrm{~m}^{3} / \mathrm{sec} \\
& \text { Q }=A^{*} \mathrm{~V} \rightarrow \\
& 0.0135=A * 1.5, A=9 * 10^{-3} \\
& \mathrm{~A}=\frac{\pi}{4} \emptyset^{2} \\
& 9 * 10^{-3}=\frac{\pi}{4} \phi^{2}, \quad \varnothing=0.12 \mathrm{~m} \\
& =120 \mathrm{~mm}
\end{aligned}
$$

* Design of inlet pipes from (R.m.T) :

区 Stage 2:

Q for one tank $=\frac{Q}{n}=\frac{1.5}{2}=0.75 \mathrm{~m}^{3} / \mathrm{sec}$
Q = A * V \rightarrow
$0.75=A * 1, \quad A=0.75 \mathrm{~m}^{2}$
$A=\frac{\pi}{4} \phi^{2} \rightarrow$
$0.75=\frac{\pi}{4} \phi^{2}, \quad \varnothing=0.97 m$

* Design of outlet pipes to filter:

囚 Stage 2:

$Q=\frac{1.5}{4}=0.375 \mathrm{~m}^{3} / \mathrm{sec}$
$\mathrm{Q}=\mathrm{A}$ * $\mathrm{V} \rightarrow$
$0.375=A * 0.6, \quad A=0.625 \mathrm{~m}^{2}$
$\mathrm{A}=\frac{\pi}{4} \phi^{2} \rightarrow$
$0.625=\frac{\pi}{4} \phi^{2}, \quad \varnothing=0.89 m$
-Losses $=\frac{F * L * V^{2}}{2 * g * \emptyset}=\frac{0.4 * 200 * 0.6^{2}}{2 * 9.81 * 0.89}=1.65$

(Filteration Tank)

囚 Stage 2:
$Q_{d}=129700 m^{3} / d$
R.o.f $=140 m^{3} / m^{2} / d$
$A=\frac{Q_{d}}{\text { R.o.f }}=\frac{129700}{140}=926.42 \mathrm{~m}^{2}$
A one filter $=8$ * $8=64 \mathrm{~m}^{2}$

No. of filter $=\frac{926.4}{64}=14.4 \approx 16$ filter
[16 filter + 3 filter for backwash]

®Stage 1:

$$
\begin{aligned}
& Q_{d}=84822 \mathrm{~m}^{3} / \mathrm{d} \\
& \mathrm{~A}=\mathrm{n} * 64=10 * 64=640 \mathrm{~m}^{2} \\
& \text { R.o.f }=\frac{Q_{d}}{A}=\frac{84822}{640}=132.5 \mathrm{~m}^{3} / \mathrm{m}^{2} / \mathrm{d} \\
& \text { [10 filter }+2 \text { filter for backwash] }
\end{aligned}
$$

XAmount of wash water:

R.o.R * A * time =
$(6 * 140) * 64 *\left(\frac{15}{24 * 60}\right)=560 \mathrm{~m}^{3}$

区 Amount of Air:

R.O.A * A one filter * time = $1 * 64$ * $5=320 \mathrm{~m}^{3}$

囚 Head losses:

$$
\begin{aligned}
\operatorname{Re} & =\frac{p_{w^{*}} v_{s^{*}} d_{p}}{\mu} \emptyset \\
& =\frac{1000 *\left(\frac{140}{24 * 60 * 60}\right) * 0.6 * 10^{-3}}{1.002 * 10^{-3}} * 1=0.97 \\
F^{\prime}= & \frac{150(1-e)}{\operatorname{Re}}+1.75
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{150(1-0.4)}{0.97}+1.75=94.5 \\
H f & =\frac{F^{\prime} \gamma L(1-e) * v_{s}^{2}}{e^{3} * d_{p^{*}} \cdot g} \\
& =\frac{94.5 * 0.7 *(1-0.4) *(0.0016)^{2}}{0.4^{3} * 0.6 * 10^{-3} * 9.81}=2 \mathrm{~m}
\end{aligned}
$$

囚Wash water Gutter:

$$
\begin{aligned}
& Q_{\text {Gutter }}=\frac{R \cdot O . B * \text { A of filter }}{\text { no.of Gutter }}=\frac{5 * 140 * 64}{3}=14933.33 \mathrm{~m}^{3} / \mathrm{d} \\
& \\
& \frac{14933.3 * 1000}{24 * 60}=10370.4 \mathrm{~L} / \mathrm{min} \\
& \\
& Q=0.76 * \mathrm{y}^{*} \mathrm{~h}^{\frac{3}{2}} \\
& \\
& 10370.4=0.76 * 50 * h^{\frac{3}{2}} \\
& \\
& \text { Take } \mathrm{h}=42 \mathrm{~cm}
\end{aligned}
$$

(Ground Tank)

$Q_{\text {max monthly }}=117913 \mathrm{~m}^{3} /$ day $=81.88 \mathrm{~m}^{3} / \mathrm{min}$

$$
\text { P = } 311935 \text { capita }
$$

区Stage 2:

$$
\begin{aligned}
\mathrm{C} 1 & =\mathrm{Q}_{\text {max monthly }} * \mathrm{~T}(20 \rightarrow 40) \\
& =117913 *\left(\frac{30}{24 * 60}\right)=2456.5 \mathrm{~m}^{3} \\
\mathrm{C} 2 & =0.4 \mathrm{Q}_{\mathrm{av}} * \mathrm{~T}(\text { day }) \\
& =0.4 * 84223 * 1=33689.2 \mathrm{~m}^{3}
\end{aligned}
$$

$$
\begin{aligned}
& \text { C3 }=\text { Qmax monthly }^{*} \mathbf{T}(6 \rightarrow 10 \mathrm{hr}) \\
& =\frac{8}{24} * 117913=39304.3 \mathrm{~m}^{3} \\
& C_{\text {fire }}=\frac{120 * p}{10000}=\frac{120 * 311935}{10000}=3743.22 \mathrm{~m}^{3} \\
& \text { Capacity }=\mathrm{C}_{\text {max }}+\frac{4}{5} \mathrm{C}_{\text {fire }} \\
& =39304.3+\frac{4}{5} * 3743.22=42298.87 \\
& \text { Capacity }=\mathbf{N} * \mathbf{L} \text { * w }{ }^{*} \text { d } \\
& 42298.87 \text { = N * } 50 \text { * } 50 \text { *5=3.38 } \\
& \text { N = } 4 \\
& 42298.87=5 \text { * } 50 \text { * w * 5, Wact }=33.83 \mathrm{~m}
\end{aligned}
$$

$\{4$ tanks with Dimensions $(50 * 33.83 * 5)\}$

खStage 1:

$Q_{\text {max monthly }}=77111$ m $^{3} /$ day
$Q_{a v}=55074$
P = 220316 capita
C1 $=53.55 * 30=1606.5$
C2 $=0.4$ * 55074 * $1=22029.6$
$C 3=\frac{77111}{24} * 8=25703.67$
$C_{\text {fire }}=\frac{120 * 220316}{10000}=2643.8$
Capacity $=22029.6+\frac{4}{5} * 2643.8=24144.64$
24144.64= N * 50 * 50 * 5, $N=2.6$

Take $\mathbf{N}=\mathbf{3} \mathbf{~ m}$

$$
\text { 24144.64=3* } 50 * w * 5, w_{\text {act }}=32.19 \mathrm{~m}
$$

$\{3$ tanks with Dimensions ($50 * 33.8 * 5$) $\}$

Final results

Stage	I	11
Conduit pipe	$3 \phi 700$	$4 \phi 700$
Sump	(3*4.5*22)	(3*4.5*34)
Screen losses	$\mathrm{S}=3 \mathrm{~cm}, \mathrm{~B}=105 \mathrm{~cm}$ n. of opening $=23$ no.of pars $=22$	$\begin{gathered} \mathrm{S}=3 \mathrm{~cm}, \mathrm{~B}=105 \\ \mathrm{~cm} \\ \text { n. of opening }=23 \\ \text { no.of pars }=22 \end{gathered}$
Low Lift Pump	$\begin{aligned} & 4 * 1236+2 * 1236 \\ & \text { working + stand by } \end{aligned}$	$\begin{aligned} & 6 * 1236+3 * 1236 \\ & \text { Working + stand by } \end{aligned}$
Force Main	$\begin{aligned} \phi & =0.9 \mathrm{~m} \\ \mathrm{~L} & =50 \mathrm{~m} \\ \text { h. } & =0.23 \mathrm{~m} \end{aligned}$	$\begin{gathered} \phi=1.236 \mathrm{~m} \\ \mathrm{~L}=50 \mathrm{~m} \\ \mathrm{~h} . \mathrm{l}=1.8 \mathrm{~m} \end{gathered}$
Rapid mixing Tank	$\begin{gathered} \mathrm{N}=1 \quad \phi=4.4 \mathrm{~m} \\ \mathrm{~T}=46 \mathrm{sec} \end{gathered}$	$\begin{gathered} \mathrm{N}=2 \quad \phi=4.4 \mathrm{~m} \\ \mathrm{~T}=61 \mathrm{sec} \end{gathered}$
Power	36 kw	36kw
Clari- Flocculation	$\begin{aligned} & 3 \operatorname{tanks} \phi_{\mathrm{T}}=39 \mathrm{~m} \\ & \phi_{\mathrm{f}}=15.6 \mathrm{~m} \end{aligned}$	$\begin{array}{cc} & \text { 4tanks } \\ \mathrm{Df}=39 & \mathrm{~d}_{\mathrm{s}}=15.6 \end{array}$
Filteration	10 filter+ 2 back wash	16 filter + 3 back wash

R.O. F $\quad 132.5 \mathrm{~m}^{3} / \mathrm{m}^{2} /$ day $\quad 140 \mathrm{~m}^{3 /} \mathrm{m}^{2} /$ day
 Ground 3 Tanks 4 Tanks Tank (50*33.8*5)

- Sludge Tank :

® Stage 1 \& 2 :

$$
Q_{\text {sludge }}=Q_{\text {sludge R.M.T }}+2 Q_{\text {Backwash }}
$$

$=\frac{782}{24 * 60 * 60}+\left(2 * \frac{560}{24 * 60 * 60}\right)=0.02 \mathrm{~m}^{3} / \mathrm{sec}$
$\forall=Q * T=0.02 *(15 * 60)=18 m^{3}$
$\mathrm{A}=\frac{\forall}{d}=\frac{18}{4}=4.5 \mathrm{~m}^{2}$
$\mathrm{A}=L^{2} \rightarrow 4.5=L^{2}, \mathrm{~L}=2.12 \mathrm{~m}$

(2.12*2.12*4)

Inlet \&Outlet Pipe

$\mathrm{Qd}=1.5 \mathrm{~m}^{3} / \mathrm{Sec} \& \mathrm{v}=(0.6: 1.5) / \mathrm{Sec}$,
Take $1 \mathrm{~m} / \mathrm{Sec}$
$\mathrm{A}=\frac{\mathrm{Od}}{v}=1.5=\frac{\pi}{4} \phi^{2}$
$\emptyset=1.38 \mathrm{~m}$

(Elevated Tank)

区 Stage 2:

$$
P=391827 \text { capita, qn = } 100 \mathrm{~L} / \mathrm{c} / \mathrm{d}
$$

Time	consumption	Accumulative
12 N-2AM	1	1
$2-4$	1.7	2.7
$4-6$	3.5	6.2
$6-8$	15.6	12.8
$8-10$	16.2	27.9
$10-12 \mathrm{~N}$	17	64.1
$12 \mathrm{~N}-12 \mathrm{PM}$	13.2	$\mathbf{7 4 . 3}$
$2-4$	12.2	86.5
$4-6$		

$6-8$	7.4	93.9
$8-10$	3.6	97.5
$10-12 \mathrm{~N}$	2.5	100

$$
\begin{gathered}
\text { Capacity }=(A+B) * P+\frac{1}{5} C_{\text {fire, where }} \\
C_{\text {fire }}=\frac{120 * P}{10000}=\frac{120 * 311935}{10000}=3743.2 \\
=(15+17) * \frac{311935}{1000}+\frac{1}{5} * 3743.2=10730.56 \mathrm{~m}^{3} \\
\mathrm{~N}=\frac{\text { Capacity }}{\operatorname{Cone} \operatorname{Tank} \rightarrow(1000 \rightarrow 2000)} \\
=\frac{10730.56}{1788}=6
\end{gathered}
$$

Cone Tankact $=\frac{\text { Capacity }}{V}=\frac{10730.56}{6}=1788 \mathrm{~m}^{3}$
Cone Tank $=\frac{\pi}{4} \emptyset^{2} d, \quad d=\frac{3}{4} \emptyset$

$$
1588=\frac{\pi}{4} * \frac{3}{4} \emptyset^{3}, \quad \varnothing=14.4 \mathrm{~m}, \mathrm{~d}=10 \mathrm{~m}
$$

X Stage 1:

$$
\begin{aligned}
& P=260231 \text { capita } \\
& \text { Capacity }=(A+B) * P+\frac{1}{5} C_{\text {fire }}, \\
& C_{\text {fire }}=\frac{120 * p}{10000}=\frac{120 * 220316}{10000}=2643.8 \\
& =(15+17) * \frac{220316}{1000}+\frac{1}{5} * 2643.8=7578.9 \mathrm{~m}^{3}
\end{aligned}
$$

$\mathrm{N}=\frac{\text { Capacity }}{\text { cone Tank }}=\frac{7578.9}{2000}=3.8 \approx 4$

Cone Tankact $=\frac{\text { Capacity }}{N}=\frac{7578.9}{4}=1894.7 \mathrm{~m}^{3}$

Cone Tank $=\frac{\pi}{4} \emptyset^{2} d, d=\frac{3}{4} \emptyset$
$1894.7=\frac{\pi}{4} * \frac{3}{4} \emptyset^{3}, \emptyset=14.4 \mathrm{~m}, \mathrm{~d}=10 \mathrm{~m}$

Chapter $\underline{2}$

(Waste Water Treatment Plant)

(Waste Water)

- Design Flow:

Stage 1:

$Q_{a v}=55074$ m $^{3} /$ day , $p=220316$

区 In Summer:

$$
\begin{aligned}
& P . F=\frac{5}{P^{0.167}}=\frac{5}{220^{0.167}}=2 \\
& Q_{\text {av waste }}=0.8 * 55074=44059.2 \mathrm{~m}^{3} / \text { day } \\
& Q_{\max }=P . F * Q_{\text {av waste }}+Q_{\text {in filteration }} \\
& \quad=2 * 44059.2+(0.1 * 44059.2)=92524.32
\end{aligned}
$$

区 In Winter:

$$
\begin{aligned}
& M . F=0.2 P^{0.167}=0.2 * 220^{0.167}=0.49 \\
& Q_{\min }=0.7 * M^{*} \cdot F^{*} Q_{\text {av waste }}+Q_{\text {in filteration }} \\
& =0.7 * 0.49 * 44059.2+(0.1 * 44059.2) \\
& =19518.23
\end{aligned}
$$

Stage 2 ：

$$
\mathrm{Q}_{\mathrm{av}}=84223 \mathrm{~m}^{3} / \text { day, } \mathrm{P}=311935 \text { capita }
$$

区 In Summer：
囚 P．F $=\frac{5}{P^{0.167}}=\frac{5}{311^{0.167}}=1.9$
$Q_{\text {av waste }}=0.8^{*} 84223=67378.4$ m $^{3} /$ day
$Q_{\text {max }}=1.9$＊ $67378.4+(0.2$＊67378．4）
＝141494．6

区 In winter：

$$
\begin{aligned}
& M . F=0.2 *(311)^{0.167}=0.52 \\
& Q_{\min }=0.8 * 0.52 * 67378.4+(0.2 * 67378.4) \\
& =41505
\end{aligned}
$$

Stage 1		
Units	$m^{3} /$ Day	$m^{3} /$ Sec
$Q_{\max }$	92524.32	1.07

$Q_{a v}$	44059.2	0.5
$Q_{\min }$	19518.23	0.226
Stage 2		
Units	$m^{3} /$ Day	m^{3} / Sec
$Q_{\max }$	141494.6	1.6
$Q_{a v}$	67378.4	0.78
$Q_{\min }$	41505	0.48

Factor $=\frac{Q_{\text {max }}}{L_{\text {total }}}$
$L_{\text {total }}=105230.5 \mathrm{~m}$
Factor $=\frac{7525}{1052300.5}=0.07$
$L_{\text {served }}=\frac{Q_{\text {design }}}{\text { factor }}$

$\emptyset m m$	Slope \%	V full (L/sec)	$\underset{\varnothing}{\text { d } \max }$	Q max Q full	Q max L/s For each pipe	L served
200	5	0.71	0.75	1.3	20	285.7
250	4	0.74			32	457.1
300	3.33	0.76			49	700
350	2.8	0.78			68	971.4
400	2.5	0.80			90	1285.7
450	2	0.77			110	1571.4
500	1.8	0.79			140	2000

600	1.4	0.79			200	2857.1
700	1.3	0.84			291	4157.1
800	1.0	0.81			431	6157.1
900	0.8	0.78	0.90	1.95	526	7514
	1000	0.8				700

$$
\begin{aligned}
& \text { Pump Station: - } \\
& v=\frac{\mathrm{Q} * \Theta}{4} \\
& v=\frac{1.55 * 20 * 60}{4}=465 \mathrm{~m}^{3}
\end{aligned}
$$

$D=2 m$
A TOTAL $=465 / 2=232.5 \mathrm{~m}^{2}$
$A_{\text {net }}=0.4^{*} A_{\text {total }}$
$A_{\text {net }}=0.4 * 232.5=93 \mathrm{~m}^{2}$

* $\varnothing^{2} A=\frac{\pi}{4}$
$* \not \emptyset^{2} 93=\frac{\pi}{4}$

$\phi=11 \mathrm{~m}$

Conclusion

It is a very important concept for the livelihood of towns and its communities. The entire discipline of sanitary engineering typically deals with the application of proven engineering methods to ensure an efficient sanitation system for human .communities and also improve the accessibility of drinking water for them

In the older engineering sciences, it was seen as a subset of civil engineering. But now with the growing emphasis on the environment, it comes under the .environmental engineering branch

The different skills which one can gain by learning the content in this field are to ensure clean and potable drinking water for humans, proper waste disposal within the economic boundaries of the community and also the treatment of wastewater. One unique feature of this field of engineering is that it is more of an open system, unlike the mechanical or electrical sciences. That is, the content in this field contains a lot from the other disciplines and some examples include, hydraulics, microbiology, project design, information technology and even environment technology

References

"Sanitary Engineering" Kamal Hassin Radwan Mansoura university1985

The Egyptian Code for Drinking Water and
.Sanitation Networks 2010

Standard

-Laws of the Minister of Health and Population
No. (458) of 2007 regarding the standards and specifications that must be met in potable water -Lows of the Minister of Irrigation and Water Resources: Law No. 48 of 1982 regarding the protection of the Nile River and waterways

