

Nile Higher Institute For Engineering and Technology Civil Engineering Department

(Sanitary Project)

(مشروع صحية)

Water Treatment Plant

2022-2023

Prepared by:

Mahmoud Ebrahem khames	(160240)
Mohamed khalid Ahmed slam	(150151)
* Ahmed Mahmoud Hassan Elashry	(170034)
Elbendary Mostafa Yahia	(170053)
Ahmed Ibrahem Abdel Aziz Nasr	(150234)
Mohamed Hossam Nafie	(170176)
Khaled Abdin Elkady	(150261)
Mostafa Abd Elfatah Elbady	(150192)

Supervisor: Associate prof. Kamal Radwan

"Professor at Civil Department, Nile Higher Institute for Engineering and Technology, Mansoura" Eng. Karim Taha Teaching assistant at Civil Department, Nile Higher Institute for Engineering and Technology

(Sanitary Engineering Project)

Dr. Kamal Radwan

Group No (3)

Table OF Contents

Abstract5
Introduction6
Chapter (1)
Forecasting population7-9
Design Flow10
Water Treatment plant units11-27
Design discharge Qd11
Design of conduit pipes12
Losses12
Screen13
Design of sump14
Design of low lift pump14
Design of suction pipe15
Design of header16
Design of force main16-17
Design of Horse Power17
Coagulation18-19
Rapid mixing tank19
Power Tank20
Clarri-flocculation Tank20-22
Volume of Sludge22

Design of inlet pipes23
Design of outlet pipes23
Filtration Tank24
Amount of wash water25
Head losses25
Wash water Gutter25
Ground Tank26-27
Table of final results
Sludge Tank29
Elevated Tank30-31
Chapter (2)
Waste Water Treatment Plant32-34
Design Flow32
Pumps Station35
Conclusion36
References
Standard

Abstract

We worked in this project (sanitary engineering project) on how to design a water network for a city, where we knew how to calculate the expected population, whether in the first or second stage, designing tanks for Rapid mixing tank, sedimentation zone, clarri_flocculation, and the ground tank. We worked on knowing the type of pipes used in city planning and designing a water station. For distribution with engineering standards according to the Egyptian code

We have worked on designing a sewage treatment plant and the used pipes, which in the station or planning the city sewage pipes.

Introduction

It is a very important concept for the livelihood of towns and its communities. The entire discipline of sanitary engineering typically deals with the application of proven engineering methods to ensure an efficient sanitation system for human communities and also improve the accessibility of drinking water for them.

In the older engineering sciences, it was seen as a subset of civil engineering. But now with the growing emphasis on the environment, it comes under the environmental engineering branch.

The different skills which one can gain by learning the content in this field are to ensure clean and potable drinking water for humans, proper waste disposal within the economic boundaries of the community and also the treatment of wastewater. One unique feature of this field of engineering is that it is more of an open system, unlike the mechanical or electrical sciences. That is, the content in this field contains a lot from the other disciplines and some examples include, hydraulics, microbiology, project design, information technology and even environment technology.

Water scarcity is one of the main challenges faced by the sanitation engineers today. There is a constant need for new forms of technology that will enable more efficient use of the water available. Some of the technologies such as sonar mapping is used to determine the amount of the water contained in the well. Some cities which are near the sea also use desalination plants, which clean the saltwater from the sea and make it drinkable. The downside to this technology now is that it is highly expensive, and cities which do not have good revenue are still unable to adopt this process.

The second challenge in sanitation engineering is climate change. For instance, in the treatment of wastewater, a lot of greenhouse gases such as Methane and Carbon Dioxide are present. These gases are produced when the anaerobic bacteria decompose the organic matter. But this is not the direct contributor to climate change. This is because the sewer system is mostly blocked off from the overground. So, when there is a sewer blockage, methane and other greenhouse gases will be trapped inside, usually reprocessed and treated. The emissions from the machines that undertake this process produce far more harmful gases which contribute to climate change. So, a lot of facilities around the world is being renovated to make them eco – friendly as much as possible.

(Water Treatment Plant)

Population and Water Consumption

The previous census records for the required city are as follows :

P1996 = 95610 capita

P2006 = 116048 capita

P2016 = 142721 capita

Forecasting Population:

A. Arithmetic Method:

Year	Population(p)	$\Delta \mathbf{P}$	$\Delta \mathbf{t}$	Ka=∆P/∆t
1996	95610			
		20438	10	2043.8
2006	116048			
		26673	10	2667.3
2016	142721			
				Sum of Ka=5440

Ka (Average)= sum of ka / N.O.Ka = 4711/2= 2356 capita/year.

 $P_n = P_o + ka * \Delta t$

- $P_{2040} = P_{2016} + ka * \Delta t$

= 142721+ 2356 (2040 – 2016) = 199265 capita

- $P_{2060} = P_{2016} + ka * \Delta t$

= 142721 + 2356 (2060 – 2016) = 246385 capita

B. Geometric Method:

Year	Population (P)	Ln(P)	∆Ln(P)	$\Delta \mathbf{t}$	Kg
1996	95610	11.468			
			0.193	10	0.0193
2006	116048	11.661			
			0.207	10	0.0207
2016	142721	11.868			
					Sum of
					kg=0.04

Ka (Average) = 0.04/2 = 0.02 capita/year.

Ln (P_n) = ln (P_o) + Kg * Δt

Ln(P2040) = In P2016 + kg * △t

= 11.868 + 0.02 (2040 - 2016) = 12.348 * P₂₀₄₀ = 230499 capita.

 $Ln(P_{2060}) = In P_{2060} + kg * \Delta t$

= 11.868 + 0.02 (2060 - 2016) = 12.748* P₂₀₆₀ = 343864 capita

C. Annual Growth Rate Method:

Year	Population (P)	Pn/Po	Δt	$(\mathbf{P}_n/\mathbf{P}_o)^{\frac{1}{\Delta t}}$	m/100
1996	95610				
		1.214	10	1.0196	0.0196
2006	116048				
		1.23	10	1.021	0.021
2016	142721				
					Sum of
					m= 0.0406

M (average) = sum of m/N.o.m = 0.0406/2 =0.0203 capita/year

 $P_n = P_o * (1 + mav)^{\Delta t}$

- **P**₂₀₄₀ = **P**₂₀₁₆ * $(1 + mav)^{\Delta t}$
 - = 142721 * $(1 + 0.0203)^{2040-2016}$ = 231184 capita

- **P2060 = P2016 ***
$$(1 + mav)^{\Delta t}$$

= 154800 * $(1 + 0.0225)^{2060-2016}$ = 345554 capita

• Final Results:

P2040 199265 230499 2311	
	34

Q2060 av = P2060 * q2060 = 311935 * 0.27 = 84223 m^3 / day Qmax monthly = 1.4 * qav = 1.4 * 84223= 117913 m^3 / day

$$Q_{max \ daily} = 1.8 * q_{av}$$

$$= 1.8 * 84223 = 151602 \ m^3 \ / \ day$$

$$Q_{max \ hourly} = 2.5 * q_{av}$$

$$= 2.5 * 84223 = 210558 \ m^3 \ / \ day$$

$$Q_{design} = 1.1 * 1.4 * q_{av}$$

$$= 1.1 * 1.4 * 84223 = 129704 \ m^3 \ / \ day$$

Flow	Stag	ge (1)	Stag	e (2)
	<i>m</i> ³	m ³ /Sec	<i>m</i> ³	m ³ /Sec
	day		day	
Qav	55074	0.64	84223	0.97
Qmax monthly	77111	0.90	117913	1.36
Q max daily	99143	1.15	151602	1.75
Qmax hourly	137698	1.6	210558	2.44
Qdesign	84822	0.98	129704	1.5

(Water Treatment Plant Units)

Design Discharge Qd:

• Stage 1:

 $\mathbf{Q}_{d} = \frac{84822}{24*60*60} = \mathbf{0.98} \ m^3$ / sec

• Stage 2: $Q_d = \frac{129704}{24*60*60} = 1.5 m^3 / sec$

Design Of Conduit Pipes:

Q_d = 1.5 m^3 / sec Assume V = 1.0 m^3 / sec Assume N = 4 A = N $\frac{\pi \varphi^2}{4}$ 1.5 = 4 * $\frac{\pi \varphi^2}{4} \varphi$ = 691mm = 700 mm A_T= 4* $\frac{\pi * (0.7)^2}{4}$ = 1.54 m^2 Vact stage (2) = $\frac{Qd}{At} = \frac{1.5}{1.54}$ = 0.97 m / sec \rightarrow (0.8 \rightarrow 1.5) Ok.

Check Of V_{act}
$$\rightarrow$$
 N = 3
A = $\frac{N \pi \varphi^2}{4}$ = 3* $\frac{\pi * (0.7)^2}{4}$ = 1.15 m^2
V_{act stage (1)} = $\frac{0.98}{1.15}$ = 0.85 $m/sec \rightarrow$ (0.8 \rightarrow 1.5) Ok.

✓ Stage 1 = 3 Ø 700
✓ Stage 2 = 4 Ø 700

Losses:

L = 100 m
***** Stage 1:
h.L =
$$\frac{F.L.V}{2g\phi} = \frac{0.04 * 100 * (0.85)^2}{2 * 9.81 * (0.7)} = 0.24 \text{ m}$$

***** Stage 2:

h.L =
$$\frac{F.L.V}{2g\phi}$$
 = $\frac{0.04*100*(0.97)^2}{2*9.81*(0.7)}$ = 0.29 m

Assume = B = 1.5 Ø= 1.5 * 70 = 105 m

Ø **= 60**

B = N * S + (N – 1) a \rightarrow 1.05 = 0.03 N + (N – 1) * 0.015 \rightarrow

N = 23

No. Of Opening = 23

No. Of Bars = N - 1 = 22

***** Screen:

h.LScreen =
$$\frac{1.4 [(v_2^2 - v_1^2)]}{2g}$$

v1 = $\frac{\varphi_t/N}{B*d}$ = $\frac{1.5/4}{1.05*2.5}$ =0.142
d = w.L - b.L = 6.68 - 4.5 = 2.18 m
d1 = d - (0.5 - 1) = 2.18 - 0.8 = 1.38 m

v1 =
$$\frac{\emptyset}{A_{net}}$$
 = $\frac{1.8/3}{N*s*d/sin\emptyset}$ = $\frac{0.98/3}{23*0.03*2/sin(60)}$ = 0.205 m/sec

v2 =
$$\frac{1.5/4}{23*0.03*2/sin(60)}$$
 = 0.235 m/sec

h.L = 1.4 *
$$\frac{(0.205)^2 - (0.124)^2}{2*9.81}$$
 = 1.902*10⁻³ m \rightarrow stage 1

h.L = 1.4 *
$$\frac{(0.235)^2 - (0.142)^2}{2*9.81}$$
 = 2.502*10⁻³ m \rightarrow stage 2

Page **13**

Design of sump:

• Stage 2:

Assume T = 5 min $V = Q * T = 5*60*1.5 = 450 m^3$ $D_{sump} = [w.L - b.L_{source} + 1 + 1] =$ = 6.68 - 4.5 + 1 + 1 = 4.2m $Area_{sump} = \frac{\forall}{d} = \frac{450}{4.2} = 107.14 m^2$ Assume width = 3 m $\forall = L * w * d$ $450 = L * 3 * 4.5 \rightarrow L = 34 m$ Sump = [3 * 4.5 * 34]• <u>Stage 1:</u> $\forall = Q * T = 5 * 60 * 0.98 = 294 m^3$ width = 3

 $294 = L * 3 * 4.5 \rightarrow L = 22$

Sump [3 * 4.5* 22]

Design of low left pump:

- suction pipe & rising main:

Q_d = 1.5
$$\frac{m^3}{sec}$$
 N = 9 → 1.5n → n = 6
N = 9 →[6working + 3stand by]

$$Q_{p} = \frac{Q_{d}}{n} = \frac{1.5}{6} = 0.250 \frac{m^{3}}{sec} \rightarrow 250 \text{ Lit/sec}$$
Assume $\forall = 1.5 \text{ m/sec}$

$$A = \frac{1.5}{1.5} = 1 \ m^{2} \rightarrow 1 = \frac{N \pi \ \phi^{2}}{4} \rightarrow N = 1$$
 $\emptyset = 1236 \text{ mm} \rightarrow V_{act} = \frac{1.236}{1.2} = 1.03 \text{ m/sec}$
Hstatic = G. L - w.Lsump + 6
= 24 - 21 + 6 = 9 m

• Stage 1: $N = 6 \rightarrow [4 \text{ working } + 2 \text{ stand by}]$ $\rightarrow \text{Neglect the friction losses in suction pipe}$ $Q_2 = 0.98 \frac{m^3}{sec} \rightarrow v = 1.5 \text{ m/sec}$ $A = \frac{0.98}{1.5} = 0.65 m^2$ • Design of Suction Pipe: A. Stage 2: $Q_d = 1.5 \frac{m^3}{sec}$ $Q_d = A * V$, assume V = 1 m/sec $A = n * \frac{\pi}{4} \emptyset^2$, assume n = 4 $Q_d = A * V$ $1.5 = 4 * \frac{\pi}{4} \emptyset^2 * 1, \emptyset = 0.7$ $A_{act} = n * \frac{\pi}{4} \emptyset^2 = 4 * \frac{\pi}{4} (0.7)^2 = 1.53 m^2$ $V_{act} = \frac{Q_d}{A_{act}} = \frac{1.5}{1.53} = 0.98 \text{ m/sec}$

> **B.Stage 1: (Check)** $Q_d = 0.98 \frac{m^3}{sec}$

Q_d = A * V, assume V = 1 m/sec
A = n *
$$\frac{\pi}{4} \phi^2$$
, assume n = 3
Q_d = A * V
0.98 = 4 * $\frac{\pi}{4} \phi^2$ * 1, ϕ = 0.7
A_{act} = n * $\frac{\pi}{4} \phi^2$ = 3 * $\frac{\pi}{4} (0.7)^2$ = 1.5 m^2
V_{act} = $\frac{Q_d}{A_{act}} = \frac{0.98}{1.5} = 0.85$ m/sec , Ok.

Design of Header:

• Stage 2:

Qd = A * V, assume V = 1m/sec
A =
$$\frac{\pi}{4} \phi^2$$

Qd = A * V
1.5 = $\frac{\pi}{4} \phi^2$ * 1 $\rightarrow \phi$ = 1.3
Aact = $\frac{\pi}{4} \phi^2$, $\frac{\pi}{4} (1.3)^2$ = 1.32 m^2
Vact = $\frac{Q_d}{A_{act}}$ = $\frac{1.5}{1.32}$ = 1.13 m/sec

• Stage 1: (Check)

Q_d = A * V, assume V = 1 m/sec A = $\frac{\pi}{4} \phi^2$ Q_d = A * V 0.98 = $\frac{\pi}{4} \phi^2$ * 1, ϕ = 1 A_{act} = $\frac{\pi}{4} \phi^2$ = $\frac{\pi}{4} (1)^2$ = 0.78 m² V_{act} = $\frac{Q_d}{A_{act}}$ = $\frac{0.98}{0.78}$ = 1.25 m/sec, Ok.

Design of Force Main:

• Stage 2:

Qd = A * V, assume V = 1.5 m/sec A = $\frac{\pi}{4} \phi^2$ Qd = A * V 1 = $\frac{\pi}{4} \phi^2$ *, ϕ = 1.1 Aact = $\frac{\pi}{4} \phi^2$ = $\frac{\pi}{4} (1.1)^2$ = 0.95 m^2 Vact = $\frac{Q_d}{A_{act}}$ = $\frac{1.5}{0.95}$ = 1.58 m/sec E Losses: h.L = $\frac{f L V^2}{2 g \phi}$, assume L = 50 m h.L = $\frac{0.04 * 50 * (1.58)^2}{2 * 9.81 * 1.1}$ = 0.23 m

• Stage 1: (Check)

Q_d = A * V, assume V = 1.5 m/sec A = $\frac{\pi}{4} \phi^2$ Q_d = A * V Assume, ϕ = 0.8 A_{act} = $\frac{\pi}{4} \phi^2$ = $\frac{\pi}{4} (0.8)^2$ = 0.5 m^2 V_{act} = $\frac{Q_d}{A_{act}}$ = $\frac{0.98}{0.5}$ = 1.96 m/sec

☑ Losses:

h.L =
$$\frac{f L V^2}{2 g \phi}$$
, assume L = 50 m
h.L = $\frac{0.04*50*(1.96)^2}{2*9.81*0.8}$ = 0.49 m

Design of Horse Power:

• Stage 2:

Assume, $Q_p = 1500 \text{ L/sec} = 1.5 \text{ } m^3 \text{ / sec}$

$$Q_{pump} = \frac{Q_d}{n} =$$
n = 10

$$Q_{pump} = \frac{1500}{6} = 250 \text{ Liter/Sec}$$

$$Hp = \frac{\gamma Q_p H_t}{75 \lambda_1 \lambda_2}$$

$$= \frac{1 * 250 * 7}{75 * 0.63} = 37 \text{ HP}$$

$$H_t = \text{hstatic + hf + hminor}$$

$$= (\text{R.M.T} - \text{W.L}) + \text{hf + hminor}$$

$$= (12 - 6.68) + 0.14 + 0.2 (0.14) = 5.5 + 9 (22) \text{ Hp}$$

• Stage 1:

Assume 7Ø 22Hp Qp = $\frac{Q_d}{n}$ = $\frac{980}{7}$ =140 Liter/Sec

(Coagulation)

- Alum solution tanks:

 $S = (20 \rightarrow 40) \text{ mg/L}$ $Q_d * s * (365 * 10^{-6})$ $= 129704 * 40 * (365 * 10^{-6}) = 1894.2 \text{ t/year}$ $\forall = \frac{Q_d * s}{c * \gamma * 10^6} = \frac{129704 * 40}{1.05 * 0.1 * 10^6} = 49.41 \text{ } m^3 \text{ / sec}$

Assume No. of tanks = 3 tanks \forall for one tank = $\frac{\forall}{3} = \frac{49.41}{3} = 16.47 \ m^3$ / day

A =
$$\frac{\forall}{d}$$
 = $\frac{16.47}{1.5}$ = 10.98 → A = L^2
L = $\sqrt{10.98}$ = 3.31 ≈ 3.3 m

3 tanks with dimension [3.3 * 3.3 * 1.5] m

• Outlet Pipe:

Assume V = 0.8 m/sec
Q = A * V =
$$\frac{49.41}{24*60*60}$$
 = A * 0.8
A = 1.875 * 10⁻⁴m²
A = $\frac{\pi}{4}$ Ø² \rightarrow 1.875 * 10⁻⁴ = $\frac{\pi}{4}$ Ø², Ø = 1.5

$$A_{act} = \frac{\pi}{4} \mathbf{1} \cdot \mathbf{5}^2 = \mathbf{1.767} \ m^2$$

(Rapid Mixing Tank)

T = 60 sec d = 3 m

★ Stage 2: $Q_d = 1.5 m^3 / \sec$ $\forall = Q_d * T = 1.5 * 60 = 90 m^3$ $A = \frac{\forall}{d} = \frac{90}{3} = 30 m^2$ Assume n = 3.76 n=4 $A = 2 * \frac{\pi}{4} \phi^2$, $\phi = 4.4 m$ $\forall_{act} = d * A = 2 * (2 * \frac{\pi}{4} * 4.4^2) = 91.3 m^3$ $T_{act} = \frac{\forall_{act}}{Q_d} = \frac{91.3}{1.5} = 61 \sec$, Ok

★ Stage 1: Qd = 0.98
$$\frac{m^3}{sec}$$

 $A_{act} = \frac{\pi}{4} (4.4)^2 = 15.2 m^2$

$$\forall_{act} = d * A = 3 * 15.2 = 45.6 m^3$$

 $T_{act} = \frac{\forall_{act}}{Q_d} = \frac{45.6}{0.98} = 46 \text{ sec}, \quad \text{Ok}$

(Power Tank)

- $P = G^2 * \mu * \forall$ Assume G = 700 = $800^2 * (1.002 * 10^{-3}) * 45.6$ = 36 KW Power required for stage 1, 2 = 36 KW

(Clari-Flocculation Tank)

Stage 2:

-Sedimentation Zone:

 $Q_d = 1.5 \ m^3$ / sec

 $t \rightarrow 3.5 \text{ hr} \\ ds \rightarrow 4 \text{ m}$

$$\forall = Q_{d} * t_{total} = 1.5 * 3.5 * 60 * 60 = 18900m^{3}$$
$$A = \frac{\forall}{d} = \frac{18900}{4} = 4725 m^{2}$$
$$A = n * \frac{\pi}{4} \emptyset^{2},$$
$$4725 = n * \frac{\pi}{4} * 40^{2}, \quad n = 3.76 \approx 4$$
$$A = 4 * \frac{\pi}{4} \emptyset_{2}^{2}, \quad \emptyset_{2} = 38.7 = 39 m$$

- Flocculation Zone:

T_f →0.5
D_f → 3.5

$$\forall = Q_d * t_f = 1.5 * 0.5*60*60 = 2700 m^3$$

 $A = \frac{\forall}{d_f} = \frac{2700}{3.5} = 771.4 m^2$
 $A = n * \frac{\pi}{4} \emptyset^2$,
771.4 = 4 * $\frac{\pi}{4} \emptyset_1^2$, $\emptyset_1 = 15.6 m$

Stage 1:

-Sedimentation Zone:

D = 4 m Q_d = 4174.5 m^3 / hr

A = n *
$$\frac{\pi}{4} \phi_T^2$$

= 3 * $\frac{\pi}{4}$ * (40)² = 3769.9m²

$$\forall$$
 = A * d
= 3769.9 * 4 = 15079.64 m^3
T_f = $\frac{\forall}{Q_d} = \frac{15079.64}{0.98*60*60} = 4.2$ hr

-Flocculation Zone:

D = 3.5 m
Q_d = 4174.5
$$m^3$$
 / hr

A = n *
$$\frac{\pi}{4} \phi_f^2$$

= 3 * $\frac{\pi}{4}$ * (15.6)² = 573.4 m^2

$$\forall$$
 = A * d
= 573.4 * 4 = 2293.6 m^3
T_f = $\frac{\forall}{Q_d} = \frac{2293.6}{0.98*60*60} = 0.65$ hr

- S.L.R:

• Stage 2:

$$Q_d = 129704 \ m^3 \ / \ day$$

 $= \frac{Q/n}{\frac{\pi}{4} (\phi_2^2 - \phi_1^2)} = \frac{129704/4}{\frac{\pi}{4} (38.8^2 - 15.6^2)} = 32.7, \ Ok$

- S.L.R:

• Stage 1: $Q_d = 84822 \ m^3$ / day

$$=\frac{\frac{84822}{3}}{\frac{\pi}{4}(38.8^2-15.6^2)}=28.52, \text{ Ok}$$

***Volume of Sludge:**

$$\forall = \frac{Q_{n* \ S.s * R}}{(1 - wc) \gamma * 10^6}$$

$$= \frac{\frac{129704}{4} \times 50 \times 0.95}{(1-0.97) \times 1.05 \times 10^6} \approx 48.8 \ m^3$$

- Sludge must be exited three times daily.

 \forall of sludge zone = $\frac{\forall}{3} = \frac{48.8}{3} = 16.2 \ m^3$

$$Q = \frac{\forall}{t} = \frac{16.29}{20*60} = 0.0135 \ m^3 \ / \ sec$$

Q = A * V
$$\rightarrow$$

0.0135 = A * 1.5, A = 9 * 10⁻³

$$A = \frac{\pi}{4} \phi^{2}$$

9 * 10⁻³ = $\frac{\pi}{4} \phi^{2}$, ϕ = 0.12 m
= 120 mm

*****Design of inlet pipes from (R.m.T):

Stage 2:

Q for one tank = $\frac{Q}{n} = \frac{1.5}{2} = 0.75 \ m^3$ / sec Q = A * V \rightarrow 0.75 = A * 1, A = 0.75 m^2 A = $\frac{\pi}{4} \phi^2 \rightarrow$ 0.75 = $\frac{\pi}{4} \phi^2$, ϕ = 0.97 m

| P a g e **23**

*****Design of outlet pipes to filter:

Stage 2:

Q =
$$\frac{1.5}{4}$$
 = 0.375 m^3 / sec
Q = A * V \rightarrow
0.375 = A * 0.6, A = 0.625 m^2

A =
$$\frac{\pi}{4}$$
 Ø² →
0.625 = $\frac{\pi}{4}$ Ø² , Ø = 0.89m

-Losses =
$$\frac{F * L * V^2}{2 * g * \emptyset} = \frac{0.4 * 200 * 0.6^2}{2 * 9.81 * 0.89} = 1.65$$

(Filteration Tank)

✓ Stage 2: Q_d = 129700 m³ / d

> R.o.f = 140 $m^3 / m^2 / d$ A = $\frac{Q_d}{R.o.f} = \frac{129700}{140} = 926.42 m^2$ A one filter = 8 * 8 = 64 m^2

No. of filter = $\frac{926.4}{64}$ = 14.4 \approx 16 filter [16 filter + 3 filter for backwash]

Stage 1:

$$Q_d$$
 = 84822 m^3 / d

$$A = n * 64 = 10 * 64 = 640m^2$$

R.o.f =
$$\frac{Q_d}{A} = \frac{84822}{640} = 132.5 \ m^3/m^2/d$$
 (Safe)

[10 filter + 2 filter for backwash]

Amount of wash water:

R.o.R * A * time =
(6 * 140) * 64 *
$$(\frac{15}{24*60})$$
 = 560 m^3

Amount of Air:

R.O.A * A one filter * time = 1 * 64 * 5 = 320 m³

☑ Head losses:

Re =
$$\frac{p_{w} * v_{s} * d_{p}}{\mu} \emptyset$$

= $\frac{1000 * (\frac{140}{24 * 60 * 60}) * 0.6 * 10^{-3}}{1.002 * 10^{-3}} * 1 = 0.97$

$$F' = \frac{150 \ (1-e)}{Re} + 1.75$$

$$=\frac{150\,(1-0.4)}{0.97}+1.75=94.5$$

$$Hf = \frac{F'\gamma L (1-e) * v_s^2}{e^3 * d_p * g}$$
$$= \frac{94.5 * 0.7 * (1-0.4) * (0.0016)^2}{0.4^3 * 0.6 * 10^{-3} * 9.81} = 2m$$

Wash water Gutter:

 $Q_{Gutter} = \frac{R.0.B*A \text{ of filter}}{no.of Gutter} = \frac{5*140*64}{3} = 14933.33 \text{ m}^3/d$ $\frac{14933.3*1000}{24*60} = 10370.4 \text{ L/min}$ $Q = 0.76*y*h^{\frac{3}{2}}$ $10370.4 = 0.76*50*h^{\frac{3}{2}},$ Take h = 42 cm

(Ground Tank)

 $Q_{max monthly} = 117913 m^3 / day = 81.88 m^3 / min$

P = 311935 capita

Stage 2:

C1 = Q_{max monthly} * T (20 → 40)
= 117913 *
$$\left(\frac{30}{24*60}\right)$$
 = 2456.5 m^3

C3 = Q_{max monthly} * T (6
$$\rightarrow$$
 10 hr)
= $\frac{8}{24}$ * 117913 = 39304.3 m^3

$$\mathsf{C}_{\mathsf{fire}} = \frac{120 * p}{10000} = \frac{120 * 311935}{10000} = \mathbf{3743.22} \ m^3$$

Capacity =
$$C_{max} + \frac{4}{5}C_{fire}$$

= 39304.3 + $\frac{4}{5}$ * 3743.22 = 42298.87

 $\{4 \textit{ tanks with Dimensions} (\ 50*33.83*5)\}$

Stage 1:

Qmax monthly = 77111
$$m^3$$
 / day
Qav = 55074
P = 220316 capita
C1 = 53.55 * 30 = 1606.5
C2 = 0.4 * 55074 * 1 = 22029.6
C3 = $\frac{77111}{24}$ * 8 = 25703.67
Cfire = $\frac{120 * 220316}{10000}$ = 2643.8
Capacity = 22029.6+ $\frac{4}{5}$ * 2643.8= 24144.64
24144.64= N * 50 * 50 * 5, N = 2.6
Take N = 3 m

24144.64= 3* 50 * w * 5, wact = 32.19 m

{3 tanks with Dimensions	(50 * 33.8 * 5)
--------------------------	-----------------

Final results				
Stage	I II			
Conduit pipe	3 <i>ф</i> 700	4ϕ 700		
Sump	(3*4.5*22)	(3*4.5*34)		
Screen losses	S=3 cm, B=105 cm n.of opening =23 no.of pars =22	S=3 cm, B=105 cm n.of opening =23 no.of pars =22		
Low Lift Pump	4*1236+2*1236 working + stand by	6*1236+3*1236 Working + stand by		
Force Main	ϕ =0.9m L=50m h.l=0.23m	φ=1.236 m L=50m h.l=1.8m		
Rapid mixing Tank	N=1 ϕ =4.4m T=46 sec	N=2 ϕ =4.4m T=61 sec		
Power	36 kw	36kw		
Clari- Flocculation	3 tanks $\phi_{ au}$ =39m $\phi_{ extsf{f}}$ =15.6m	4tanks Df= 39 d _s = 15.6		
Filteration	10 filter+ 2 back wash	16 filter + 3 back wash		

R.O. F	132.5 m³/m²/day	140 m ^{3/} m ² /day
Ground	3 Tanks	4 Tanks
Tank	(50*33.8*5)	(50*33.8*5)

Sludge Tank :

Stage 1 & 2 :

$$Q_{\text{sludge}} = Q_{\text{sludge R.M.T}} + 2 Q_{\text{Backwash}}$$
$$= \frac{782}{24*60*60} + (2*\frac{560}{24*60*60}) = 0.02 m^3 \text{ / sec}$$

 \forall = Q * T = 0.02 * (15 * 60) = 18 m^3

$$A = \frac{\forall}{d} = \frac{18}{4} = 4.5 \ m^2$$

$$A = L^2 \rightarrow 4.5 = L^2$$
, L = 2.12 m

(2.12*2.12*4)

Inlet & Outlet Pipe

Qd =1.5 $m^3/Sec \& v = (0.6:1.5)/Sec$,

Take 1 m/Sec

$$A = \frac{Qd}{v} = 1.5 = \frac{\pi}{4} \phi^2$$

 $\emptyset = 1.38 m$

(Elevated Tank)

Stage 2:

P = 391827 capita, qn = 100 L/c/d

Time	consumption	Accumulative
12 N-2AM	1	1
2 – 4	1.7	2.7
4 – 6	3.5	6.2
6 – 8	6.6	12.8
8 – 10	15.1	27.9
10 – 12 N	16.2	44.1
12N-12PM	17	61.1
2 – 4	13.2	74.3
4 – 6	12.2	86.5

6 – 8	7.4	93.9
8 – 10	3.6	97.5
10 – 12 N	2.5	100

Capacity = (A + B) * P +
$$\frac{1}{5}$$
 C_{fire}, where
C_{fire} = $\frac{120 * P}{10000}$ = $\frac{120 * 311935}{10000}$ = 3743.2
= (15 + 17) * $\frac{311935}{1000}$ + $\frac{1}{5}$ * 3743.2 = 10730.56 m^3
N = $\frac{Capacity}{Cone Tank \to (1000 \to 2000)}$
= $\frac{10730.56}{1788}$ = 6
Cone Tankact = $\frac{Capacity}{V}$ = $\frac{10730.56}{6}$ = 1788 m^3
Cone Tank = $\frac{\pi}{4}$ \emptyset^2 d, d = $\frac{3}{4}$ \emptyset
1588 = $\frac{\pi}{4}$ * $\frac{3}{4}$ \emptyset^3 , \emptyset = 14.4 m, d = 10 m
X Stage 1:
P = 260231 capita
Capacity = (A + B) * P + $\frac{1}{5}$ C_{fire},
C_{fire} = $\frac{120 * P}{10000}$ = $\frac{120 * 220316}{10000}$ = 2643.8
= (15 + 17) * $\frac{220316}{1000}$ + $\frac{1}{5}$ * 2643.8 = 7578.9 m^3

Page **31**

$$N = \frac{Capacity}{cone Tank} = \frac{7578.9}{2000} = 3.8 \approx 4$$

Cone Tankact =
$$\frac{Capacity}{N} = \frac{7578.9}{4} = 1894.7 \ m^3$$

Cone Tank = $\frac{\pi}{4} \phi^2$ d, d = $\frac{3}{4} \phi$ 1894.7 = $\frac{\pi}{4} * \frac{3}{4} \phi^3$, ϕ = 14.4 m, d = 10 m

Chapter 2

(Waste Water Treatment Plant)

(Waste Water)

- Design Flow:

Stage 1: Qav = 55074 m³ / day , p = 220316

In Summer:

$$\mathsf{P.F} = \frac{5}{P^{0.167}} = \frac{5}{220^{0.167}} = \mathbf{2}$$

 $Q_{av waste} = 0.8 * 55074 = 44059.2 m^3 / day$ $Q_{max} = P.F * Q_{av waste} + Q_{in filteration}$ = 2 * 44059.2 + (0.1 * 44059.2) = 92524.32

In Winter:

M.F = 0.2
$$P^{0.167}$$
 = 0.2 * 220 $^{0.167}$ = 0.49

Qmin = 0.7 * M.F * Qav waste + Qin filteration = 0.7 * 0.49 * 44059.2 + (0.1 * 44059.2) =19518.23

*** Stage 2** :

 $Q_{av} = 84223 \ m^3$ / day, P = 311935 capita

In Summer: P.F = $\frac{5}{P^{0.167}} = \frac{5}{311^{0.167}} = 1.9$

 $Q_{av waste} = 0.8* 84223 = 67378.4 m^3 / day$

Q_{max} = 1.9 * 67378.4 + (0.2 * 67378.4) =141494.6

In winter:

 $M.F = 0.2 * (311)^{0.167} = 0.52$

Q_{min} = 0.8 *0.52 *67378.4+(0.2 * 67378.4) = 41505

Stage 1				
Units	m^3 / Day	m^3 / Sec		
Qmax	92524.32	1.07		

Qav	44059.2	0.5			
Qmin	19518.23	0.226			
	Stage 2				
Units	m^3 / Day	m^3 / Sec			
Qmax	141494.6	1.6			
Qav	67378.4	0.78			
Qmin	41505	0.48			

Factor =
$$\frac{Q_{max}}{L_{total}}$$

L_{total} = 105230.5 m

Factor =
$$\frac{7525}{1052300.5}$$
 = 0.07

$$L_{served} = \frac{Q_{design}}{factor}$$

Ømm	Slope %	V full (L/sec)	d max Ø	Q max Q full	Q max L/s For each pipe	L served	
200	5	0.71	0.75		20	285.7	
250	4	0.74				32	457.1
300	3.33	0.76				49	700
350	2.8	0.78		0.75 1.3	68	971.4	
400	2.5	0.80				90	1285.7
450	2	0.77			110	1571.4	
500	1.8	0.79			140	2000	

P a g e **34**

600	1.4	0.79			200	2857.1
700	1.3	0.84			291	4157.1
800	1.0	0.81			431	6157.1
900	0.8	0.78	0.90	1.95	526	7514
1000	0.8	0.84			700	10000

«Pump Station: -

$$v = \frac{Q * \theta}{4}$$
$$v = \frac{1.55 * 20 * 60}{4} = 465 \text{ m}^3$$

D=2m

A TOTAL = 465/2=232.5 m²

A_{net}=0.4*A_{total}

A_{net}= 0.4*232.5 = 93 m²

$$* \mathbf{Ø}^2 A = \frac{\pi}{4}$$

$$* \phi^2 93 = \frac{\pi}{4}$$

Ø= 11 m

Conclusion

It is a very important concept for the livelihood of towns and its communities. The entire discipline of sanitary engineering typically deals with the application of proven engineering methods to ensure an efficient sanitation system for human .communities and also improve the accessibility of drinking water for them

In the older engineering sciences, it was seen as a subset of civil engineering. But now with the growing emphasis on the environment, it comes under the .environmental engineering branch

The different skills which one can gain by learning the content in this field are to ensure clean and potable drinking water for humans, proper waste disposal within the economic boundaries of the community and also the treatment of wastewater. One unique feature of this field of engineering is that it is more of an open system, unlike the mechanical or electrical sciences. That is, the content in this field contains a lot from the other disciplines and some examples include, hydraulics, microbiology, project design, information technology and even environment technology

References

"Sanitary Engineering" Kamal Hassin Radwan Mansoura university1985

The Egyptian Code for Drinking Water and Sanitation Networks 2010

Standard

-Laws of the Minister of Health and Population No. (458) of 2007 regarding the standards and specifications that must be met in potable water

-Lows of the Minister of Irrigation and Water Resources: Law No. 48 of 1982 regarding the protection of the Nile River and waterways